
Abstract. We applied a strategy to assign the individual
contributions that atoms make to the optical rotation
angle and, more generally, to the molecular chirality.
The method resolves the optical rotatory power tensor
into atomic contributions employing the formalism of
the acceleration gauge for the electric dipole and the
torque formalism for the magnetic dipolar moment. The
gross atomic isotropic contributions have been evalu-
ated for nitrogen and hydrogen in hydrazine, employing
Gaussian basis sets of very good quality, in order to
achieve the Hartree–Fock limit.

Keywords: Rotatory power – Chirality – Atomic
contributions

Introduction

The idea that molecular properties can be rationalized
in terms of atomic contributions, transferable from
molecule to molecule, constitutes a subject of inter-
est from the early days of chemistry. The idea of
specific transferable magnetic atomic susceptibilities is
due to Pascal [1]. Attempts have also been made to
define the resolution of electric dipole polarizability
into atomic terms, see for instance the sets of trans-
ferable contributions determined by Denbigh [2] and
Vogel [3].

Alternative partitions have been proposed, adopting
simple quantum mechanical methods based on mole-
cular orbital localization procedures [4]. Bader et al. [5]
introduced the concept of atoms in molecules (AIM) [6],

as spatial domains bounded in space, to demonstrate the
additivity of group polarizabilities and susceptibilities.

In this context we are testing an additive scheme for
resolving the average optical rotatory power of a mole-
cule into atomic contributions, via the average operator
method (OAM) employed previously to describe atomic
magnetic susceptibilities [7], atomic electric polarizabil-
ities [8, 9], and gross atomic populations [10].

The optical rotatory power is related to the rotation
of plane-polarized light by a solution of chiral mole-
cules. At a single frequency the rotation angle of plane-
polarized light arises from the difference in the index of
refraction for left- and right-circularly polarized light.

The rotatory power is a frequency-dependent prop-
erty, and because of that it is very interesting to give
further insight into the possibility of its partitioning into
atomic contributions consistent with the equilibrium
geometry.

In a previous paper [11] we applied a partitioning
scheme based on rigorous definitions of quantum
mechanical operators suitable to investigate the optical
rotatory power of hydrogen peroxide [12]. Related
theoretical procedures and algorithms have been
implemented within the SYSMO suite of computer
programs [13]. This time we are investigating the par-
tition into atomic contributions of the hydrazine opti-
cal rotatory power tensor by employing the same
method. This molecule exhibits optical activity because
the nitrogen is a chiral center. A wide numerical test
has been performed in order to document the trans-
ferability of the optical rotatory power in N2H4, a very
simple model, in frozen chiral arrangements of the
nuclei, into atomic contributions. The behavior of the
total molecular property and its atomic contributions
with a change of the molecular structure, i.e., rotation
about the bond between the heavier atoms, is also
investigated. A brief outline of the theoretical methods
employed in the calculation is given in Sects. 3 and 4.
Numerical calculations are presented and discussed in
Sect. 5.
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Tensors related to optical rotatory power

In a molecule with n electrons with charge )e, mass me,
and coordinates ri, respect to an arbitrary origin, the
canonical and angular momenta of the ith electron are
indicated by pi and li: li=rixpi, i=1...n.

The corresponding quantities for the N nuclei are Zie,
MI, RI, etc. The electronic global operators are R for
position, P for total canonical momentum, and L for
angular momentum. The electric, l=)eR, and mag-
netic, m=)(e/2mec)L, dipole moments are also defined.
The R and L operators are defined with respect to an
explicit origin, r0, of the coordinate system:

Ra r0ð Þ ¼
Xn

i¼1
ria � r0að Þ; ð1Þ

La r0ð Þ ¼
Xn

i¼1
Iia r0ð Þ ¼ eabc

Xn

i¼1
rib � r0b
� �

pic: ð2Þ

A sum over repeated Greek suffixes is implied, and
eabc is the Levi–Civita unit tensor.

The optical rotatory power of a chiral molecule can
be rationalized via the tensor [11]

jab xð Þ ¼ � 1

�h

X

j 6¼a

2

xja
2 � x2

Im a laj jjh i j mb

�� ��a
� �� �

; ð3Þ

where Im takes the imaginary part of the term within the
parentheses, xja are the natural transition frequencies
of the molecule in the reference state

��w 0ð Þ
a [�

��a[,
with energy eigenvalue E 0ð Þ

a , excited-state energies
E 0ð Þ

j , determined by solving the Schrödinger equation for
the unperturbed Hamiltonian H(0), and x is the angular
frequency of a monochromatic electromagnetic wave
incident on the molecule.

The trace of the tensor defined in Eq. (3) is a
pseudoscalar, changing sign under inversion of the
coordinate system because l and m are, respectively, a
polar and an axial vector. The a optical rotatory
parameter is measured experimentally [14] and is related
to the tensor j by

a½ �D ¼ 1:343� 10�4jm2 n2 þ 2
� ��

3MW; ð4Þ

where MW is the molar mass, n is the refractive index
of the medium, and m is the frequency of the sodium D
line.

Equation (3) defines a second-order property in the
length–angular momentum R–L picture, i.e.,
(R,L):j(R,L)(x)=j(x). Using the expressions for the
total force of the nuclei on the electrons

i
�h

H 0ð Þ; P
h i

¼ F N
n ¼ �e2

XN

l¼1
ZI

Xn

i¼1

ri � RI

ri � RIj j3
; ð5Þ

the torque about the origin acting on the electrons

i
�h

H 0ð Þ; L r0ð Þ
h i

¼ KN
n r0ð Þ

¼ e2
XN

l¼1
ZI

Xn

i¼1

ri � RI

ri � RIj j3
� RI � r0ð Þ; ð6Þ

and taking into account that the total force and torque
can also be conveniently rewritten in terms of the electric
field

Ei
I ¼ e

Xn

i¼1

ri � RI

ri � RIj j3
; ð7Þ

on nucleus I, arising from electron i, alternative defini-
tions for the rotatory power tensor can immediately be
arrived at by off-diagonal hypervirial relationships [15].
The hypervirial relationships, within the notation of
Ref. [12], are

\a Raj jj[¼
i

me
x�1ja \a Paj jj[¼

1

me
x�2ja \a F N

na

�� ��j[

¼ e
m

x�2ja

XN

I¼1
ZI\a En

Ia

�� ��j[
ð8Þ

and

\a Laj jj[¼ ix�1ja \a KN
na

�� ��j[: ð9Þ

Five alternative expressions are found for the rota-
tory power tensor, see Refs. [11, 12]:

j R;Kð Þ
ab xð Þ

¼ e2

2mec�h

X

j 6¼a

2

xja x2
ja � x2

� �Re a Raj jjh i j KN
nb

���
���a

D E� �
;

ð10Þ

j P ;Lð Þ
ab xð Þ

¼ � e2

2m2
ec�h

X

j 6¼a

2

xja x2
ja � x2

� �Re a Paj jjh i j Lb

�� ��a
� �� �

;

ð11Þ

j P ;Kð Þ
ab xð Þ

¼ � e2

2m2
ec�h

X

j 6¼a

2

xja
2 x2

ja �x2
� � Im a Paj jjh i j KN

nb

���
���a

D E� �
;

ð12Þ

j F ;Lð Þ
ab xð Þ

¼ e2

2m2
ec�h

X

j 6¼a

2

xja
2 x2

ja � x2
� � Im a F N

na

�� ��j
� �

j Lb

�� ��a
� �� �

;

ð13Þ
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j F ;Kð Þ
ab xð Þ

¼ � e2

2m2
ec�h

X

j 6¼a

2

xja
3 x2

ja � x2
� �Re a F N

na

�� ��j
� �

j KN
nb

���
���a

D E� �
:

ð14Þ

As F N
na and KN

na are, respectively, polar and axial
vectors, and the operator jab(x) is a pseudotensor, this
character is unaffected by the change of picture.

All these definitions are equivalent in quantum
mechanics, as a consequence of the invariance of the
theory in a canonical transformation. However, the
numerical estimates of a property do not depend on the
chosen formalism, and only if the eigenfunctions |a>
and |j> are the exact eigenstates to a model Hamilto-
nian [14], a condition that is hardly met in a calculation
based on the algebraic approximation, values arrived at
by Eq. (3) and Eqs. (10), (11), (12), (13) and (14) can be
appreciably different: their numerical agreement gives a
benchmark of basis set completeness and an a priori
quality criterion. When that agreement is met in self-
consistent-field (SCF) calculations, we commonly say
that the Hartree–Fock limit has been achieved.

The rotatory power tensor depends on the origin
assumed for the multipole expansion. For instance, in a
change of origin, r¢¢ fi r¢+d, the rotatory power tensor
changes according to the relationship [11]

jab r00ð Þ ¼ jab r0ð Þ � 1

2c
eabcddaac;

Tr j r00ð Þf g ¼ Tr j r0ð Þf g:
ð15Þ

Equation (15) is valid, and the trace of the tensor
stays the same, if the hypervirial relations, Eqs. (8) and
(9), are satisfied exactly. For instance, to fulfill this
requirement within the algebraic approximation, i.e.,
employing the coupled Hartree–Fock method and ran-
dom-phase approximation (RPA) [11] a complete basis
set should be used [14]. In any practical calculation
adopting a truncated basis, the equations describing the
origin dependence of molecular tensors must be properly
interpreted. If the optical activity tensor is defined via
Eq. (3), then in Eq. (15) the electric polarizability in
mixed length–velocity gauge [11] must be used. If only
gaugeless basis sets are available, the trace of the tensor
in the (P,L) gauge, Eq. (11), will be invariant, but its
quality always depends on the quality of the basis set.
Another way of solving the problem of the gauge
invariance is provided by basis sets of London orbitals
[16], i.e., gauge-including atomic orbitals (GIAO), as
they were renamed for the first time by Hansen and
Bouman [17]. GIAO calculations of optical rotatory
power are implemented in the Dalton program [18].

Atomic contributions to optical rotatory power

The chiroptical phenomena in molecules have been
known since the early days of quantum mechanics.

Rosenfeld [19] made the quantum mechanical descrip-
tion of the rotation angle. Kirwood and other authors
[20, 21] proposed models based on polarizable interact-
ing atoms or chemical groups. These models do not
provide a general strategy for assigning the contribu-
tions of individual atoms. The numerical estimates of
atomic contributions have become available [11], and
have been successfully applied very recently [10]. The
method is simple: the total force and the torque of the
nuclei on the electrons, appearing in Eqs. (12), (13), and
(14) can be partitioned as sums of corresponding atomic
operators:

F N
n ¼

PN

I¼1
F I

n ¼
Pn

i¼1
F N

i ;

F I
i ¼ �e2ZI

ri�RI

ri�Rj j3 ;
ð16Þ

and

KN
n ¼

PN

I¼1
KI

n ¼
Pn

i¼1
KN

i

KI
i ¼ �e2ZI

ri�RI

ri�Rj j3 � RI :
ð17Þ

Accordingly, the trace of the tensor for optical
activity can be partitioned into atomic terms. For
instance, in the low-frequency limit, i.e., jaa(x[0)=
jaa(0)=jaa, we can introduce an [RK(I)] scheme

jaa ¼
PN

I¼1
j RK Ið Þ½ �

aa ;

j RK Ið Þ½ �
aa ¼ e2

2mec�h

P
j 6¼a

2
xja

3 Re a Raj jjh i j KI
na

�� ��a
� �� �

;
ð18Þ

a [PK(I)] scheme

jaa ¼
PN

I¼1
j PK Ið Þ½ �

aa ;

j PK Ið Þ½ �
aa ¼ � e2

2mec�h

P
j 6¼a

2
xja

4 Im a Paj jjh i j KI
na

�� ��a
� �� �

;
ð19Þ

an [F(I)L] scheme

jaa ¼
PN

I¼1
j F Ið ÞL½ �

aa ;

j F Ið ÞL½ �
aa ¼ � e2

2m2
ec�h

P
j 6¼a

2
xja

4 Im a F I
na

�� ��j
� �

j Laj jah i
� �

;
ð20Þ

an [F(I)K] scheme

jaa ¼
PN

I¼1
j F Ið ÞK½ �

aa ;

j F Ið ÞK½ �
aa ¼ � e2

2m2
ec�h

P
j 6¼a

2
xja

5 Re a F I
na

�� ��j
� �

j KN
na

�� ��a
� �� �

;
ð21Þ

and an [FK(I)] scheme

jaa ¼
PN

I¼1
j FK Ið Þ½ �

aa ;

j FK Ið Þ½ �
aa ¼ e2

2m2
ec�h

P
j 6¼a

2
xja

5 Re a F N
na

�� ��j
� �

j KI
na

�� ��a
� �� �

:
ð22Þ

430



These expressions involve transition matrix elements
of nuclear-centered operators, without a partition of the
molecule into overlapping atoms: the operators are
averaged over the total system (OAM, based on referee’s
remarks on Ref. [22]), and because of this the atomic
contributions to a molecular property (i.e., dipole
polarizability) are not transferable like those obtained
using Bader’s AIM, because the operator-averaging will
extend into what are in reality basins of neighboring
atoms. The atomic contributions are transferable
between members of a homologous serial, and the
method relies on completely general and simple quantum
mechanical recipes. The atom domain is defined by the
actual domain of atomic operators like F N

na and KN
na. Such

a domain is not uniquely defined; it depends on the form
of the operator itself. That means that each operator, F I

na
and KI

na, weights differently the molecular domain lead-
ing to different definitions of effective atomic basins.
A detailed discussion of the OAM [6, 7, 8, 9, 22] and
Bader’s AIM [5] is included in Ref. [10].

Finally, it must be recalled that the atomic contri-
butions to the optical rotatory power depend on the
gauge of the vector potential. The molecular rotatory
power is gauge-invariant if the hypervirial relations,
Eqs. (8) and (9), are satisfied exactly.

Results and discussion

The molecular equilibrium geometry of hydrazine em-
ployed in the calculations was optimized at the 6–31G*
SCF level of accuracy via the GAMESS code [23]. Iso-
mers of hydrazine were found by internal rotation about
the N–N bond. The rotation was performed rigidly
(keeping fixed the equilibrium bond distances) from
F=0� (C2v, eclipsed) to F=180� (C2h, staggered). The
equilibrium configuration corresponds to F=90.2� (C2

point group), in accordance with Refs. [24, 25]. In all the
calculations of the j optical rotatory power tensor the
origin of the coordinate system is in the center of mass.

Four basis sets of increasing extension and quality
were used in the calculation of the rotatory power tensor
and its average atomic contributions. Basis set 1 is
(18s18p7d/7s7p)/[6s6p2d/2s2p] designed in Ref. [26], to
yield accurate representation of force operators, has been
successfully used to predict near-Hartree–Fock estimates
of nuclear electric shieldings [25, 27]. Basis sets 2–4 cor-
respond to different contractions of basis set 1: basis
set 2 is the same as basis set 1 with uncontracted d and p
functions on the oxygen and hydrogen atoms, respec-
tively; basis set 3 is (18s18p7d/7s7p)/[10s10p7d/7s7p].
The use of step p functions, obtained by allowing the 18p
subset to vary freely, is recommended to improve the
representation of the force operator [28, 29]. Basis set 4 is
(18s18p7d/7s7p), a fully free set.

The results of our calculations are reported in
Tables 1 and 2 and Figs. 1, 2, 3, 4, and 5. All the
calculations were done by employing the RPA via
various formalisms, implemented in the SYSMO code

[30]. The average trace of the rotatory power tensor
j(x)=1/3jaa(x) in the low-frequency limit, x=0, is
reported in Table 1 for the molecular equilibrium
geometry. The results corresponding to basis set 4 are
expected to be close to the Hartree–Fock limit for the
property. The results corresponding to formalisms
(P,L), (R,K), and (P,K) are close to (R,L) only for basis
sets 3 and 4.

The results corresponding to formalisms (F,L) and
(F,K) suffer greater deviations. They improve very much
on enlarging the basis set from 1 to 4, as it can be easily

Table 1. Average rotatory power tensor of N2H4 at equilibrium
geometry. The number of contracted Gaussian-type orbitals is
given in parentheses for Gaussian basis sets 1–4 (in parts per
thousand atomic units). The self-consistent-field (SCF) energy is
given in bohr

Formalisma Basis set

1 (104) 2 (224) 3 (284) 4 (340)

(R,L) )0.364 )0.255 )0.249 )0.257
(P,L) )0.202 )0.243 )0.247 )0.245
(F,L) )0.022 )0.073 )0.132 )0.132
(R,K) )0.328 )0.229 )0.240 )0.248
(P,K) )0.161 )0.217 )0.239 )0.236
(F,K) 0.011 )0.050 )0.124 )0.124
ESCF )111.193894 )111.231341 )111.233610 )111.233849

aSee Eqs. (10), (11), (12), (13), and (14)

Table 2. Partition of the average rotatory power of N2H4 at equi-
librium geometry, j(x)=1/3jaa(x) (in parts per thousand atomic
units), into atomic contributions versus the angular frequency, x,
of the perturbing monochromatic wave. The results are from basis
set 4, with the origin at the center of mass. The values of x (in
atomic units) are given in parentheses

Atom Formalism K(0.0) K(0.20) K(0.24) K(0.27) K(0.28) K(0.30)

(R,L) )0.257 )0.201 1.263 419.7 151.7 27.4
GIAOa )0.262 )0.206 1.262 419.8 151.9 27.3
(P,L) )0.245 )0.183 1.347 421.0 151.5 27.5

N (R,KN) 0.017 0.235 0.947 54.17 4.24 0.206
H1 (R,KH1) 1.042 3.248 8.177 196.35 )33.71 )12.940
H3 (R,KH3) )1.184 )3.570 )8.471 )40.48 104.92 26.390
Total (R,K) )0.247 )0.174 1.306 420.10 150.90 27.390
N (P,KN) 0.027 0.243 0.961 54.330 4.237 0.233
H1 (P,KH1) 1.042 3.252 8.203 196.77 )33.770 )12.958
H3 (P,KH3) )1.181 )3.563 )8.459 )40.382 104.890 26.420
Total (P,K) )0.236 )0.137 1.411 421.4 150.7 27.390
N (EN,L) 0.525 0.818 2.229 275.4 69.8 )8.20
H1 (EH1,L) 0.045 )1.613 )6.641 )162.9 100.25 53.92
H3 (EH3,L) )0.636 0.828 5.307 99.55 )96.17 )32.54
Total (F,L) )0.132 0.065 1.790 424.10 147.7 26.40
N (EN,K) 0.519 0.817 2.247 275.55 69.34 )8.310
H1 (EH1,K) 0.059 )1.587 )6.62 )162.75 100.10 53.940
H3 (EH3,K) )0.638 0.82 5.307 99.39 )95.95 )32.5
Total (F,K) )0.124 0.089 1.850 424.50 147.0 26.2
N (F,KN) 0.040 0.279 0.995 54.63 3.95 0.17
H1 (F,KH1) 1.062 3.291 8.270 197.18 )33.94 )12.91
H3 (F,KH3) )1.166 )3.524 )8.389 )39.992 105.06 24.15
Total (F,K) )0.124 0.089 1.850 424.5 147.0 26.2

aCalculations made using the Dalton program [18] using a basis set
of gauge-including atomic orbitals corresponding to the same basis
set
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verified. However basis set 4 is not good enough to
represent properly the force operator.

The nonequivalent hydrogen, nitrogen, and total
contributions to the average k(x) tensor are displayed in
Table 2 for frequencies up to 0.3 au and basis set 4.

Comparison with values obtained by the Dalton code
[17] for the (R,L) formalism using GIAO basis sets is
included. Excellent agreement is observed between the
DALTON and SYSMO results for this representation.
This agreement indicates that basis set 4 is close to the
Hartree–Fock limit for the property. Remember that
(R,L) estimates from DALTON calculations are inde-
pendent of the origin; only (P,L) are independent of it
for the gaugeless basis sets employed here. (P,L), (R,K),
and (P,K) results agree with (R,L) results.

The dependence of the average j tensor with the
frequency of the monochromatic wave is plotted in
Fig. 1. A resonance between the frequency of the inci-
dent light and the natural frequencies xja is clearly
observed.

The results displayed in Table 2 show that the basis
set is still poor to represent the average rotatory power
tensor in the force gauge, as it was pointed out before;
and the schemes based on torque (Eqs. 18, 19, 22) pro-
vide atomic contributions to the average tensor that are

Fig. 1. The average rotatory power of N2H4, expressed as
1/3Trj(x), in various formalisms, as a function of the frequency
x (in parts per thousand atomic units)

Fig. 3. Contribution of one nitrogen atom to the average rotatory
power of N2H4 in the limit x=0, in various formalisms, as a
function of the HNN–NNH dihedral angle (in parts per thousand
atomic units)

Fig. 4. Contribution of one hydrogen (H1) atom to the average
rotatory power of N2H4 in the limit x=0, in various formalisms, as
a function of the HNN–NNH dihedral angle (in parts per thousand
atomic units)

Fig. 2. The average rotatory power of N2H4, 1/3Trj(x), in the
limit x=0, in various formalisms, as a function of the HNN–NNH
dihedral angle (in parts per thousand atomic units)

Fig. 5. Contribution of one hydrogen (H3) atom to the average
rotatory power of N2H4 in the limit x=0, in various formalisms, as
a function of the HNN–NNH dihedral angle (in parts per thousand
atomic units)
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similar among them, but different from those provided
by the scheme based on force (Eqs. 20, 21). We bring
these two observations together to emphasize that the
quality of the basis set is not the reason for the dis-
agreement between the schemes as will be explained in
the following discussion.

Figure 2 shows the dependence of the average rota-
tory tensor j on the HNN–NNH dihedral angle, i.e., the
dependence on the rotation angle F about the N–N
bond, evaluated with basis set 3 (all the results displayed
in Figs. 2, 3, 4, 5 were evaluated with basis set 3, because
of interest in the behavior of the property with the
change in the geometry and not so much in the quality of
the results, which can be analyzed from Tables 1, 2).
Despite the problem of incomplete convergence, the six
formalisms are close to one another. They would
become the same if the hypervirial relationships (Eqs. 8,
9), were fulfilled. The overall measure of the systematic
deviation of the curves for (F,L) and (F,K) estimates
from the corresponding ones for (R,L), (P,L), (R,K), and
(P,K) is plotted. There are two separate sets of curves
consistent with the numerical values of Table 1 for the
equilibrium geometry.

Figures 3, 4, and 5 show the dependence of the
atomic contributions to the rotatory average tensor j(0)
with the HNN–NNH dihedral angle, for nitrogen and
the nonequivalent hydrogen atoms, H1 and H3. [RK(I)],
[PK(I)], and [FK(I)] are close to one another in spite of
using basis set 3, and define a homogeneous set of
numerical values for the torque partitioning scheme. The
force scheme, partitions [F(I)L] and [F(I)K], which
would become the same in the Hartree–Fock limit,
define another set of numerical values. The atomic
contributions provided by the force scheme are system-
atically larger in absolute value than those given by the
torque scheme. In Ref. [22] we proposed a definition of
the Ith atom in the molecule as that region of space
which essentially coincides with the domain weighted by
operators like those appearing in Eqs. (16) and (17). The
present findings confirm those of the previous paper on
H2O2 [10]: the basins of the operators F I

na and KI
na do not

coincide. They define different AIM within the OAM
approach. See the appendix in Ref. [10].

Figure 3 shows [RK(N)], [PK(N)], and [FK(N)] are
virtually the same on the scale of the plot, defining
atomic contributions in the torque scheme. [F(N)L] and
[F(N)K] curves are close to one another, but they are
characterized by a different pattern with a minimum and
a maximum, respectively, at conformations in the prox-
imity of 45� after and before the eclipsed configuration
(F=0). Such a trend cannot be attributed to insufficient
convergence of atomic contributions in the force gauge.

Similar conclusions are arrived at from inspection of
Figs. 4 and 5, showing that the curves corresponding to
[RK(H)], [PK(H)], and [FK(H)] belong, for each hydro-
gen, to a set different from that defined by the [F(H)L]
and [F(H)K] curves.

Another difference between Figs. 2, 3, and 4 is that
the hydrogen contributions do not exhibit a minimum
and a maximum in the force scheme; there is a minimum
for the H1 contribution and a maximum for the con-
tribution of the nonequivalent H3 hydrogen to the
molecular property.

The AIM weighted by the force F I
n and the torque KI

n
operators do not coincide, in general, for molecular
properties. This can be explained by the different
dependence of these operators on the inverse power of
the electron–nucleus distance, see Eqs. (16) and (17).
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